Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619980

RESUMO

Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.


Assuntos
Achromobacter , Cardamine , Selênio , Ácidos Graxos/química , Análise de Sequência de DNA , Cardamine/genética , Filogenia , Rizosfera , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Ácido Selenioso
2.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
3.
J Basic Microbiol ; 63(11): 1305-1315, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551746

RESUMO

Selenium (Se) is a dietary essential trace element for humans with various physiological functions and it could also be accumulated by some plant species, like Astragalus bisulcatus, Stanleya pinnata, and Cardamine hupinshanensis. A novel Gram-stain-negative, facultatively anaerobic, selenite-tolerant bacterium, designated strain YLX-1T , was isolated from the rhizosphere of a Se hyperaccumulating plant, Cardamine hupingshanensis in Enshi, China. Phylogenetic analysis based on 16 S rRNA gene sequences indicated that strain YLX-1T is a potential new species in the genus Wautersiella. Strain YLX-1T could grow in the temperature range of 4-37°C (optimally at 28°C) and in the pH range of 5-9 (optimum pH 7), which also could tolerate Se up to 6000 mg Se/L via producing extracellular red nano-Se with 100-300 nm size. However, it could predominantly accumulate selenocystine (SeCys2 ) in the cell under lower Se stress (1.5 mg Se/L). These results would help broaden our knowledge about the Se accumulation and transformation mechanism involved in rhizosphere bacteria like strain YLX-1T in C. hupingshanensis. Based on polyphasic data, we propose the creation of the new species Wautersiella enshiensis sp. nov., strain YLX-1T ( = CCTCC M 2013671) which will be promising to produce nano-Se as fertilizer, food additives or medicine.


Assuntos
Cardamine , Selênio , Bactérias/genética , Técnicas de Tipagem Bacteriana , Cardamine/genética , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , Rizosfera , RNA Ribossômico 16S/genética , Ácido Selenioso , Análise de Sequência de DNA
4.
PLoS Biol ; 21(7): e3002191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463141

RESUMO

We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.


Assuntos
Arabidopsis , Cardamine , Arabidopsis/genética , Cardamine/genética , Genótipo , Fenótipo , Demografia
5.
Curr Biol ; 33(14): 2977-2987.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37453425

RESUMO

How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cardamine , Cardamine/genética , Cardamine/metabolismo , Arabidopsis/metabolismo , Folhas de Planta , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Ann Bot ; 131(4): 585-600, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656962

RESUMO

BACKGROUND AND AIMS: Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS: We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS: Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS: This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.


Assuntos
Cardamine , Filogenia , Cardamine/genética , Turquia , Variação Genética , Europa (Continente)
7.
Genes (Basel) ; 13(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421792

RESUMO

Cardamine hupingshanensis (K. M. Liu, L. B. Chen, H. F. Bai and L. H. Liu) is a perennial herbal species endemic to China with narrow distribution. It is known as an important plant for investigating the metabolism of selenium in plants because of its ability to accumulate selenium. However, the phylogenetic position of this particular species in Cardamine remains unclear. In this study, we reported the chloroplast genome (cp genome) for the species C. hupingshanensis and analyzed its position within Cardamine. The cp genome of C. hupingshanensis is 155,226 bp in length and exhibits a typical quadripartite structure: one large single copy region (LSC, 84,287 bp), one small single copy region (17,943 bp) and a pair of inverted repeat regions (IRs, 26,498 bp). Guanine-Cytosine (GC) content makes up 36.3% of the total content. The cp genome contains 111 unique genes, including 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. A total of 115 simple sequences repeats (SSRs) and 49 long repeats were identified in the genome. Comparative analyses among 17 Cardamine species identified the five most variable regions (trnH-GUG-psbA, ndhK-ndhC, trnW-CCA-trnP-UGG, rps11-rpl36 and rpl32-trnL-UAG), which could be used as molecular markers for the classification and phylogenetic analyses of various Cardamine species. Phylogenetic analyses based on 79 protein coding genes revealed that the species C. hupingshanensis is more closely related to the species C. circaeoides. This relationship is supported by their shared morphological characteristics.


Assuntos
Cardamine , Genoma de Cloroplastos , Selênio , Filogenia , Cardamine/genética , Composição de Bases
8.
Ann Bot ; 130(2): 245-263, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35789248

RESUMO

BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.


Assuntos
Cardamine , Teorema de Bayes , Cardamine/genética , Filogenia , Poliploidia , Reprodução
9.
Front Biosci (Landmark Ed) ; 27(4): 124, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35468683

RESUMO

BACKGROUND: Cardamine flexuosa is considered to be two separate species in the Cardamine genus based on their geographical distribution: European C. flexuosa and Eastern Asian C. flexuosa. These two species have not shown any morphological differences to distinguish each other. Recently, the Eastern Asian species has been regarded as Cardamine occulta by their ecological habitats. Therefore, we are interested in analyzing the C. occulta chloroplast genome and its characteristics at the molecular level. METHODS: Here, the complete chloroplast (cp) genome of C. occulta was assembled de novo with next-generation sequencing technology and various bioinformatics tools applied for comparative studies. RESULTS: The C. occulta cp genome had a quadripartite structure, 154,796 bp in size, consisting of one large single-copy region of 83,836 bp and one small single-copy region of 17,936 bp, separated by two inverted repeats (IRa and IRb) regions of 26,512 bp. This complete cp genome harbored 113 unique genes, including 80 protein-coding genes, 29 tRNA, and four rRNA genes. Of these, six PCGs, eight tRNA, and four rRNA genes were duplicated in the IR region, and one gene, infA, was a pseudogene. Comparative analysis showed that all the species of Cardamine encoded a small variable number of repeats and SSRs in their cp genome. In addition, 56 divergences (Pi > 0.03) were found in the coding (Pi > 0.03) and non-coding (Pi > 0.10) regions. Furthermore, KA/KS nucleotide substitution analysis indicated that thirteen protein-coding genes are highly diverged and identified 29 amino acid sites under potentially positive selection in these genes. Phylogenetic analyses suggested that C. occulta has a closer genetic relationship to C. fallax with a strong bootstrap value. CONCLUSIONS: The identified hotspot regions could be helpful in developing molecular genetic markers for resolving the phylogenetic relationships and species validation of the controversial Cardamine clade.


Assuntos
Cardamine , Genoma de Cloroplastos , Cardamine/genética , Cloroplastos/genética , Genoma de Cloroplastos/genética , Repetições de Microssatélites , Filogenia , RNA de Transferência , Sequenciamento Completo do Genoma
10.
J Hazard Mater ; 406: 124283, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187796

RESUMO

Cardamine violifolia was found here to accumulate selenium (Se) to over 9000 mg kg-1 dry weight. To investigate the mechanism of Se accumulation and tolerance in C. violifolia, metabolome, transcriptome, and proteome technologies were applied to C. violifolia seedlings treated with selenate. Several sulfate transporter (Sultr) genes (Sultr1;1, Sultr1;2, and Sultr2;1) and sulfur assimilatory enzyme genes showed high expression levels in response to selenate. Many calcium protein and cysteine-rich kinase genes of C. violifolia were downregulated, whereas selenium-binding protein 1 (SBP1) and protein sulfur deficiency-induced 2 (SDI2) of C. violifolia were upregulated by selenate. The expression of genes involved in the ribosome and posttranslational modifications and chaperones in C. violifolia were also detected in response to selenate. Based on the results of this study and previous findings, we suggest that the downregulated expression of calcium proteins and cysteine-rich kinases, and the upregulated expression of SBP1 and SDI2, were important contributors to the Se tolerance of C. violifolia. The downregulation of cysteine-rich kinases and calcium proteins would enhance Se tolerance of C. violifolia is a novel proposition that has not been reported on other Se hyperaccumulators. This study provides us novel insights to understand Se accumulation and tolerance in plants.


Assuntos
Cardamine , Selênio , Cardamine/genética , Metaboloma , Proteoma/genética , Ácido Selênico , Selênio/toxicidade , Transcriptoma
11.
BMC Plant Biol ; 20(1): 492, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109081

RESUMO

BACKGROUND: Cardamine violifolia, native to China, is one of the selenium (Se) hyperaccumulators. The mechanism of Se metabolism and tolerance remains unclear, and only limited genetic information is currently available. Therefore, we combined a PacBio single-molecule real-time (SMRT) transcriptome library and the Illumina RNA-seq data of sodium selenate (Na2SeO4)-treated C. violifolia to further reveal the molecular mechanism of Se metabolism. RESULTS: The concentrations of the total, inorganic, and organic Se in C. violifolia seedlings significantly increased as the Na2SeO4 treatment concentration increased. From SMRT full-length transcriptome of C. violifolia, we obtained 26,745 annotated nonredundant transcripts, 14,269 simple sequence repeats, 283 alternative splices, and 3407 transcription factors. Fifty-one genes from 134 transcripts were identified to be involved in Se metabolism, including transporter, assimilatory enzyme, and several specific genes. Analysis of Illumina RNA-Seq data showed that a total of 948 differentially expressed genes (DEGs) were filtered from the four groups with Na2SeO4 treatment, among which 11 DEGs were related to Se metabolism. The enrichment analysis of KEGG pathways of all the DEGs showed that they were significantly enriched in five pathways, such as hormone signal transduction and plant-pathogen interaction pathways. Four genes related to Se metabolism, adenosine triphosphate sulfurase 1, adenosine 5'-phosphosulfate reductase 3, cysteine (Cys) desulfurase 1, and serine acetyltransferase 2, were regulated by lncRNAs. Twenty potential hub genes (e.g., sulfate transporter 1;1, Cys synthase, methionine gamma-lyase, and Se-binding protein 1) were screened and identified to play important roles in Se accumulation and tolerance in C. violifolia as concluded by weighted gene correlation network analysis. Based on combinative analysis of expression profiling and annotation of genes as well as Se speciation and concentration in C. violifolia under the treatments with different Na2SeO4 concentrations, a putative Se metabolism and assimilation pathway in C. violifolia was proposed. CONCLUSION: Our data provide abundant information on putative gene transcriptions and pathway involved in Se metabolism of C. violifolia. The findings present a genetic resource and provide novel insights into the mechanism of Se hyperaccumulation in C. violifolia.


Assuntos
Cardamine/genética , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Selênio/metabolismo , Cardamine/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Análise de Sequência de RNA , Transcriptoma/genética
12.
Sci Rep ; 10(1): 13291, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764594

RESUMO

The rhizome is a plant organ that develops from a shoot apical meristem but penetrates into belowground environments. To characterize the gene expression profile of rhizomes, we compared the rhizome transcriptome with those of the leaves, shoots and roots of a rhizomatous Brassicaceae plant, Cardamine leucantha. Overall, rhizome transcriptomes were characterized by the absence of genes that show rhizome-specific expression and expression profiles intermediate between those of shoots and roots. Our results suggest that both endogenous developmental factors and external environmental factors are important for controlling the rhizome transcriptome. Genes that showed relatively high expression in the rhizome compared to shoots and roots included those related to belowground defense, control of reactive oxygen species and cell elongation under dark conditions. A comparison of transcriptomes further allowed us to identify the presence of an ER body, a defense-related belowground organelle, in epidermal cells of the C. leucantha rhizome, which is the first report of ER bodies in rhizome tissue.


Assuntos
Cardamine/genética , Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Rizoma/genética , Brotos de Planta/genética
13.
J Chem Ecol ; 46(3): 317-329, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32060668

RESUMO

Plants defend themselves against herbivore attack by constitutively producing toxic secondary metabolites, as well as by inducing them in response to herbivore feeding. Induction of secondary metabolites can cross plant tissue boundaries, such as from root to shoot. However, whether the potential for plants to systemically induce secondary metabolites from roots to shoots shows genetic variability, and thus, potentially, is under selection conferring fitness benefits to the plants is an open question. To address this question, we induced 26 maternal plant families of the wild species Cardamine hirsuta belowground (BG) using the wound-mimicking phytohormone jasmonic acid (JA). We measured resistance against a generalist (Spodoptera littoralis) and a specialist (Pieris brassicae) herbivore species, as well as the production of glucosinolates (GSLs) in plants. We showed that BG induction increased AG resistance against the generalist but not against the specialist, and found substantial plant family-level variation for resistance and GSL induction. We further found that the systemic induction of several GSLs tempered the negative effects of herbivory on total seed set production. Using a widespread natural system, we thus confirm that BG to AG induction has a strong genetic component, and can be under positive selection by increasing plant fitness. We suggest that natural variation in systemic induction is in part dictated by allocation trade-offs between constitutive and inducible GSL production, as well as natural variation in AG and BG herbivore attack in nature.


Assuntos
Borboletas/fisiologia , Cardamine/fisiologia , Aptidão Genética/fisiologia , Glucosinolatos/metabolismo , Herbivoria , Animais , Borboletas/crescimento & desenvolvimento , Cardamine/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Distribuição Aleatória
14.
J Plant Res ; 133(2): 147-155, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925575

RESUMO

Allopolyploids possess complete sets of genomes derived from different parental species and exhibit a range of variation in various traits. Reproductive traits may play a key role in the reproductive isolation between allopolyploids and their parental species, thus affecting the thriving of allopolyploids. However, empirical data, especially in natural habitats, comparing reproductive trait variation between allopolyploids and their parental species remain rare. Here, we documented the flowering phenology and floral morphology of the allopolyploid wild plant Cardamine flexuosa and its diploid parents C. amara and C. hirsuta in their native range in Switzerland. The flowering of C. flexuosa started at an intermediate time compared with those of the parents and the flowering period of C. flexuosa overlapped with those of the parents. Cardamine flexuosa resembled C. hirsuta in the size of flowers and petals and the length/width ratio of petals, while it resembled C. amara in the length/width ratio of flowers. These results provide empirical evidence of the trait-dependent variation of allopolyploid phenotypes in natural habitats at the local scale. They also suggest that the variation in some reproductive traits in C. flexuosa is associated with self-fertilization. Therefore, it is helpful to consider the mating system in furthering the understanding of the processes that may have shaped trait variation in polyploids in nature.


Assuntos
Cardamine/anatomia & histologia , Flores/anatomia & histologia , Cardamine/genética , Diploide , Ecossistema , Fenótipo , Poliploidia , Autofertilização , Suíça
15.
Curr Biol ; 29(24): 4183-4192.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761704

RESUMO

Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.


Assuntos
Citocininas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/genética , Cardamine/metabolismo , Citocininas/genética , Evolução Molecular , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530733

RESUMO

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Assuntos
Arabidopsis/fisiologia , Cardamine/fisiologia , Luz , Fitocromo/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
18.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130379

RESUMO

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cardamine/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Cardamine/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo
19.
Elife ; 72018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30334736

RESUMO

Invariant floral forms are important for reproductive success and robust to natural perturbations. Petal number, for example, is invariant in Arabidopsis thaliana flowers. However, petal number varies in the closely related species Cardamine hirsuta, and the genetic basis for this difference between species is unknown. Here we show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness. This large effect of AP1 is explained by epistatic interactions: A. thaliana AP1 confers robustness by masking the phenotypic expression of quantitative trait loci controlling petal number in C. hirsuta. We show that C. hirsuta AP1 fails to complement this function of A. thaliana AP1, conferring variable petal number, and that upstream regulatory regions of AP1 contribute to this divergence. Moreover, variable petal number is maintained in C. hirsuta despite sufficient standing genetic variation in natural accessions to produce plants with four-petalled flowers.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Cardamine/anatomia & histologia , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cardamine/genética , Epistasia Genética , Flores/genética , Proteínas de Domínio MADS/genética
20.
Sci Rep ; 8(1): 2789, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434336

RESUMO

Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.


Assuntos
Cardamine/genética , Selênio/metabolismo , Cardamine/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Ácido Selenioso/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...